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Structure of gem-graphs 
H.P. Patil and V. Raja 

 
Abstract The purpose of this paper is to introduce the gem-graphs, which are the natural ex-
tensions of trees and higher-dimensional trees (such as k-trees and k- trees) and deter-
mine their basic properties. We obtain a characterization of gem-graphs over paths of 
length at least 4 or cycles of length at least 5, and also determine their connectivity, cen-
trality, planarity and Hamiltonian -property.  
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1. INTRODUCTION                                                                    

Higher-dimensional trees were first intro-
duced by Harary and Palmer [6]. Later, the 
variation of these families of graphs were 
developed systematicallylly and studied in 
detail (see, Dewdney [5], Rose [15], Beineke 
et al. [2], Borowiecki et al. [3] and Patil et 
al. [10]. While trees are usually defined as 
those graphs which are connected and 
acyclic. This class of graphs can be equiva-
lently defined by the following recursive 
construction rule: 
Step 1.   A single vertex (K1) is a tree. 
Step 2.   Any tree T of order n ≥ 2, can be 
constructed from a tree Q of order (n − 1) 
by inserting an nth - vertex, and joining it to 
any vertex of Q. 
 
 
Now, the aim of this paper is to extend 
the above tree- construction rule by al-
lowing the base of the recursive growth 
(i.e., Step 1) to be any graph.  With this 
view, we introduce and study the new 
family of graphs, whose recursive growth 
just starts from any given graph H. This 
kind of graphs, we simply call the gem-
graphs over H. 
 

Definition1.1. The gem-graph G over the 
given graph H, we denote by G < H >, is   
the graph that can be obtained by the fol-
lowing recursive construction rule:  
1.  Given graph H of order k ≥ 1, is the 
smallest gem-graph. 

2.  To a gem - graph G < F > of order n ≥ k, 
insert a new (n + 1)th vertex, and join it to any 
set of k vertices :   of G < F >,  so 
that the induced subgraph <   > is 
isomorphic to H. 
It will be convenient to refer to the gem-
graph G over H, by simply        G<H>- 
graph. Sometimes, we shall abbreviate 
"gem-graph G over H" to simply, gem-graph 
G<H>. By the definition of the gem-graphs, 
the following facts are evident: 
1. G < K1>- graphs are th trees 
2. G < K2>- graphs are 2-trees, which are 
maximal outer planar graphs and studied in 
great detail (see,[11],[12]). 
 
3. G < K3>- graphs are 3-trees, which are 
the special family of maximal planar 
graphs, and studied in (see, [1], [7]). 
4. G <Kk>- graphs are k-trees, which are ex-
tensively studied by many authors (see, [9], 
[13], [14]). 
5. G <Kk>- graphs are k- trees, studied re-
cently in (see,[10]). 
 
 However, we notice that the gem-graphs 
are the natural extensions of trees, k-trees 
and k-ctrees. In this paper,  we  study the 
elementary  properties,  and  structural 
characterizations of  the  gem-graphs  over  
paths   Pk  (for  k ≥ 4)  and cycles  Cn  (for  n ≥ 
5).  In addition, we determine their connec-
tivity, centrality, planarity, Hamiltonian 
property in great detail. 
 
For  a  vertex  v of  a  graph  G,  a  neighbour  
of  v is  a  vertex  adjacent  to  v in  G.   The 
neighbourhood N (v) of v is the set of all 
neighbours of v.  Thus, deg (v) = |N (v)|. 
. 
1. Gem-graphs over a given graph 
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The following theorem is simply a re-
statement of the definition of gem-graphs. 
Theorem 2.1.  Let H be any graph of order k 
≥ 1. Then a graph G of order p ≥ k + 1, is a 
gem-graph over H if and only if the follow-
ing three conditions hold: 
1. (G) can be labelled as  so that for 

each positive integer i (k + 1 ≤ i ≤ p), there exist k 
distinct unordered labels: i 1, i2, . . . , ik such that  < 

> =  H in G. 

2. The induced subgraph <  > = 

H + K1 in G. 
3.  deg  (vi ) = k  in <  >. 

 
Roughly speaking, G can be reduced to the 
base-graph H, by repeated removal of a 
vertex of degree k. 
Definition 2.1. Let H be any graph of or-
der k ≥ 1, and let G < H >   be a gem-
graph of order p ≥ k + 1. Then a vertex v of 
G < H > is called a H-vertex if all its neigh-
bouring vertices in G induce the graph H. 
 
Next, we present the structural characteri-
zation of a graph to be gem-graph over 
any given graph. 
Theorem 2.2.  Let H be any graph of order k ≥ 
1.  Then a graph G of order p ≥ k + 1, is a gem-
graph over H if and only if G has a H-vertex 
v of degree k, and G − v is again a gem-
graph over H. 
 
By  the  repeated  application  of  Theorem 
2.2  to  the  gem-graphs, we have  the  fol-
lowing result. 
Theorem 2.3. Let H be any graph of order k 
≥ 1, and let G < H > be a gem-graph of or-
der p ≥ k. Then 
1. |E (G)| = |E (H)| + k (p − k). 
2. If p ≥ k + 2, then G contains a subgraph 
isomorphic to H + 2K1. 
3. If H contains m edges and t trian-
gles, then the number of triangles in G < H 
> is t + m (p − k). 
4.  Characterization and properties of gem-graphs over 
paths or cycles 
Notice that a gem-graph G < H >, where H 
is either a path P3 or a cycle C4, has highly 
irregular complex structure by nature, and 
its characterization appears to be hard in 
this case. The purpose of this section is to 
obtain a characterization and the proper-
ties of the gem-graphs G < H >, when H is 

either a path Pk (for k ≥ 4) or a cycle Cm (for m 
≥ 5). 
Theorem 3.1.  Let  G < H > be  a  gem-graph  
of  order  p ≥ k + 1,  where  H is  either  Pk for 
k ≥ 4 or Ck  f or k ≥ 5. Then G< H > is isomorphic 
to            H + (p − k) K1. 
Proof:  Suppose H is a path Pk for k ≥ 4.  We 
prove the result by induction on p. 
If p = k + 1, then by definition, G <Pk> = Pk + 
K1, which is obviously true. 
Assume the result is true for any m < p.  
Next, we consider a gem-graph G over H,
 where H is Pk, having its order p. Let v 
be any H-vertex of G. By Theorem 2.2, G−v 
is a gem-graph of order p − 1. By induction hy-
pothesis, we have G – v = H + (p−k−1 ) K1. 
Consequently, G−v is the sum of two disjoint 
graphs: H = Pk, and I = (p−k−1) K1.  
 
Suppose v is adjacent to each vertex of H in 
G, then the result follows immediately. 
Otherwise, v is adjacent to at least one ver-
tex of I in G.  Moreover, deg (v) = k in G, we 
have two nonempty sets: A and B such that A 
⊆ H; B ⊆ I, with A ∪ B = N (v), and |A| + |B| = 
k. 
We discuss four cases depending on the 
cardinality of A and B: 
Case1.  |A| = k − 1, and |B| = 1.  Since k ≥ 4,                                      
Case 2.  |A| = k − 2, and |B| = 2.  Immediate-
ly, we have |A| ≥ 2 (because k ≥ 4).  
We discuss two possibilities: 
2.1. Suppose A is independent. Certainly, 
there are two non-adjacent vertices x and y 
in A. Let us consider B = {a, b}.  Immediately, 
we see that < {x, y, a, b} > = C4 appears in N 
(v), which is impossible. 
2.2. Suppose A is non-independent.  Then 
<A> contains at least one edge. In this situ-
ation, Case 1 repeats. 
Case3.  |A| = 1, and |B| = k − 1.  It is easy to 
see that < N (v) > is a star-graph K1,k−1, and is 
not possible. 
Case4.  |A| ≥ 2, and |B| ≥ 3. 
There are two possibilities, depending on 
A: 
4.1. Suppose A is non-independent.  Then 
Case 1 repeats. 
4.2. Suppose A is independent.  Then Case 
2 repeats. 
In each of the above cases, we see that < N 
(v) > = H, and hence v is not a H-vertex of 
G. This is a contradiction. Therefore, v 
cannot be adjacent to any vertex of I. 
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Finally, assume H is a   cycle Ck for k ≥ 5.  
An analogous proof; that is, replacing Pk by 
Ck in the above arguments shows that G 
<Ck> is isomorphic to Ck + (p − k) K 1 . 
 
   A graph is self- centered if it is isomor-
phic to its center. It is well-known that for 
any hamiltonian graph G, and for every 
nonempty proper subset S of V (G), the num-
ber of components ω (G \ S) ≤ |S|.    
 
Now, we study mainly the centrality, hamil-
tonian property, planarity and  outerplanarity  
of  gem-graphs  over  paths  Pk  (for  k ≥ 4)  or  
a cycle Cm (for m ≥ 5). We use the symbols, 
e(G) and t(G) denote the number of edges 
and triangles in a graph G, respectively and 
χ(G) denotes the  chromatic number of G. 
 
Proposition 3.2.  Let G < H > be a gem-
graph of order p ≥ k + 1, where H is either a 
path Pk for k ≥ 4 or a cycle Ck for k ≥ 5. 
1. (a). e(G <Pk>)  =   k(p − k + 1) − 1. 
         (b). e(G <Ck>)   =   k(p − k + 1). 
2. (a). t(G <Pk>)    =  (k − 1)(p − k). 
(b).  t(G <C k>)   =        k(p − k). 
 
3. (a).  χ(G <Pk>) = 3. 

(b). χ(G <Ck>)  =  

4. G < H > is a self- entered graph. 
5.  G < H > is hamiltonian if and only if p ≤ 
2k. 
    (a). G < H > is planar if and only if p ≤ k + 
2. 
    (b). G <Pk )> is outerplanar if and only if p = 
k + 1. 
(c). G <Ck )> is non-outerplanar if and only if 
for all p : (k + 1 ≤ p ≤ k + 2). 
Proof: (1) and (2), directly follows from 
the definition of gem-graph. Next,  we  
prove  (3),   G < H > contains  at  least  one  
triangle  by  (2),  and hence, it is not 2-
colorable. This implies that χ (G<H>) ≥ 3. 
To achieve an upper bound, we shall pro-
duce a proper 3- coloring of G <Pk>, and also 
a proper (3 or 4)- coloring  of G <Ck>.  Since 
G<H> = H + (p − k) K 1.  
 
Now, we discuss two cases depending on 
the nature of H. 
3(a).  When H = Pk for k ≥ 4.  In this case, 
color the vertices of Pk by using colors 1 and 

2. Further, assign the color 3 to all the verti-
ces of      (p − k) K 1.  This completes a prop-
er 3- coloring of G < Pk >. 
3(b).  When H = Ck for k ≥ 5. Color the verti-
ces of Ck by using two colors: 1 and 2, alter-
natively if k is even. Otherwise, use only 
three colors (1, 2, and 3). If k is even, then 
assign the color 3 to the vertices of (p − k) 
K1.  If k is odd, then assign the color 4 to the 
vertices of (p − k) K1.  Thus, a proper (3 or 4)-
coloring of G <Ck> is completed.  
To prove (4), let us consider H is either Pk 
(for k ≥ 4) or Ck (for m ≥ 5).  For every pair of 
vertices (u, v) in G < H >, where G<H> =   H + (p 
− k) K1, u ∈ V (H) and v ∈ V (H), the eccentricity e 
(u) = e (v) = 2.  Consequently, G< H > is a self- 
centered graph. 
For (5), assume that G< H > is hamiltonian and 
p ≥ 2k + 1.  Since |V (H)| = k, we have | (p − k) 
K1| = k + 1.  Consider S = V (H).  Then G \ S = (p − k) 
K1 and hence ω (G \ S) ≥ k + 1. This implies that G is 
not hamiltonian. So, p ≤ k + 1. 
 
To prove the converse, it is sufficient to ob-
tain a Hamilton- cycle in G<H> = H + tK1 

for 1 ≤ t ≤ k. Let V (H) = {u1,u2,... ,uk}, and V 
(tK1) = {v1,v2,... ,vt}. Sin e k ≥ t, we have (k −t) = 
m ≥ 0. Immediately, the Hamilton- cycle:  u1 u2 
... um+1 v1 um+2 v2 um+3 ... v t−1ukvt  u1 appears in 
G.  Hence G<H> is Hamiltonian. 
For 6(a), assume that G < H > is planar and p 
≥ k + 3.  Immediately, we observe that (H + 
3K1) ⊆ G< H >.  Since K3,3 appears as an in-
duced subgraph in (H + 3K1), it follows that 
K3,3   appears as a forbidden subgraph in G 
< H >, and hence by Kuratowski theorem 
G < H > is not planar. This is a contradic-
tion to our assumption. Hence, p ≤ k + 2. It 
is easy to prove the converse. 
Finally, 6(b) and 6(c) are the immediate 
consequence of 6(a). 
For any graph G, i (G) denotes the number 
of induced 4- cycles in G.  Now, we deter-
mine this for gem-graphs. 
Proposition 3.3.   
Let G < H > be a gem-graph of order  p ≥ k + 
2, where H is  either Pk for k ≥ 4 or Ck  f or k ≥ 5. 
 
1. (a). G  is induced -free for . 
         (b). 
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. 
 
2. (a). G  is induced -free for n ≥ 5and 

. 

   (b). . 

 
Proof: In the proof of Theorem 3.1, we no-
tice that the induced subgraphs resulted 
in a gem-graph G<H> = H + (p − k) K 1, are 
the only triangles, (4 or k)-cycles, stars and 
paths. With this, G< H > is certainly an in-
duced Cn-free graph for n ≥ 5 and further, 
only in the case, when H = Cn (for n ≥ 5), then 

. 
 
To compute the number of 4-cycles in 
G<Pk>, notice that any 4-cycle in G<Pk> is 
resulted by choosing any two non-adjacent 
vertices from Pk and any two vertices from I, 
where I = (p − k) K1.  Moreover, we see that 
the number of pairs of non-adjacent vertices 
in  is , and the number of 2-element sub-
sets of I is .  Hence  
 
 

 
 
Finally, to compute the number of 4-cycles 
in G , notice that a 4-cycle in G  is resulted by se-
lecting any two non-adjacent vertices from  and any two 
vertices from I. Also, the number of pairs of non-adjacent 
vertices in  is . Therefore,  
 

 
 
Let  and  denote the connectivity 
and edge-connectivity of a graph G, respec-
tively. It is well-known (due to Whitney) 
that . Next, we study the 
connectivity of a gem- graph G < H >, when 
H is either Pk (for k ≥ 4) or Ck (for k ≥ 5). 
Proposition 3.4. 
 Let G<Pk> for k ≥ 4  and G <Ck> f or k ≥ 5, be the gem-graphs of orde                        
1.  δ(G < H >) = k. 
2. G<H > is k- connected (resp. k-edge-
connected) 
 
Proof:  (1) follows directly by the recursive 
definition of gem-graphs. For (2), we notice 
that by removal of any (k −1) vertices from G 
< H > results in a connected graph, but re-

moval of |V (H)| = k vertices from G < H > 
results in a disconnected graph. This shows 
that G< H > is k-connected. On the other 
hand, by Whitney theorem with (1) implies 
that κ′(G<H>) = k.  Consequently, G< H > is 
k-edge- connected. 
4. Open problems 
.In Section 3, we have   characterized only 
the gem-graphs   G < H > for which, H is 
either a path Pk for k ≥ 4 or a   cycle Cm for 
m ≥ 5.  Now, the following problems remain 
open for further work: Characterize the class 
of gem-graphs G < P3 > or G < C4 >. 
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